стань автором. присоединяйся к сообществу!
  • На сегодняшний день в мире реализуется достаточно много проектов, посвященных управляемому термоядерному синтезу (УТС): от масштабных, класса мегасайенс, в которых принимают участие все промышленно развитые страны мира, до более маленьких, развернутых на территории одного института.

    Токамак Глобус-М2 Физико-технического института им. А. Ф. Иоффе РАН. Фото предоставлено коллективном Глобус-М2.Токамак Глобус-М2 Физико-технического института им. А. Ф. Иоффе РАН. Фото предоставлено коллективном Глобус-М2. © www.inp.nsk.su

    Компетенции Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) позволяют специалистам развивать как собственные проекты по физике плазмы и УТС, так и выступать экспертами в большинстве других.

    читать дальше

  • Эксперимент по изучению структуры нейтрона и антинейтрона на электрон-позитронном коллайдере ВЭПП-2000 с детектором СНД, который проводят специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), вышел на новый уровень точности.

    Событие с треками в СНД во время эксперимента. Предоставлено С. Середняковым.Событие с треками в СНД во время эксперимента. Предоставлено С. Середняковым. © www.inp.nsk.su

    По сравнению с результатами 2022 г. в этом году физики увеличили статистику набора данных в четыре раза, в два раза улучшили точность эксперимента и разработали прецизионный метод регистрации нужных для исследования частиц.

    читать дальше

  • В совместной работе специалистов Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Объединенного института ядерных исследований (ОИЯИ) получены рекордные параметры охлаждения частиц.

     © www.inp.nsk.su

    В результате в эксперименте BARIONIC MATTER @ NUCLOTRON в 2 раза увеличена скорость набора событий, а значит, и его эффективность.

    читать дальше

  • Специалисты Томского политехнического университета и Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) провели цикл экспериментов на стенде УНУ ЭЛВ-6 по экспресс-изготовлению различного типа керамик.

     © press.inp.nsk.su

    Одним из результатов стало получение люминесцентной керамики промышленного качества. Время изготовления составило секунды, при том что получение таких материалов другими методами занимает десятки часов.

    читать дальше

  • Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) совместно с партнерами из Института электронно-пучковых технологий (EB-tech Co., Ltd., Южная Корея) разработали и поставили в Институт энергетических и ядерных исследований (IPEN, Бразилия) мобильный промышленный ускоритель.

     © inp.nsk.su

    Установка будет использоваться для обеззараживания и очистки воды местных рек, радиационной стерилизации медицинского оборудования и фармацевтических продуктов, пастеризации, модификации проводниковых приборов и др.

    читать дальше

  • В рамках нацпроекта «Наука и университеты» (федеральный проект «Развитие масштабных научных и научно-технологических проектов по приоритетным исследовательским направлениям») в Институте химии твёрдого тела и механохимии СО РАН (ИХТТМ СО РАН) при участии Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработан новый тип слабо проводящей керамики (СПК) с заданной электропроводностью для снятия статического заряда с внутренних поверхностей вакуумных камер ускорителей. Кроме того, новый материал может быть использован для создания высоковольтных изоляторов в различных областях электротехники.

    читать дальше

  •  © inp.nsk.su

    Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), Института химии твердого тела и механохимии СО РАН (ИХТТМ СО РАН) и Института катализа им. Г.К. Борескова СО РАН разработали и испытали прототип детектора на основе нанокомпозитного материала. Он создан по уникальной технологии, которая открывает новые возможности в детектировании рентгеновского излучения. По расчетам ученых, детектор, созданный с помощью новой технологии, будет иметь высокое пространственное разрешение (20 микрон или лучше) и высокую чувствительность.

    читать дальше

  •  © img.geliophoto.com

    Новосибирский Академгородок известен далеко за пределами самого Новосибирска. Основанный в 1957, город ученых собрал на своей территории десятки научно-исследовательских институтов, за что одна из его улиц — проспект Академика Лаврентьева — внесена в Книгу рекордов Гиннеса как «самая умная улица в мире».

    Несмотря на преимущественно советскую застройку, Академгородок не кажется застрявшим в 60-х. То, что город развивается в ногу со временем, наглядно подтверждают футуристичные здания Технопарка, новый корпус НГУ и статус сибирской кремниевой долины. Сегодня в городке живут, трудятся и учатся около 75 тысяч человек.

    читать дальше

  •  © Бионышева Елена/Сделано у нас

    Открытые ловушки для удержания плазмы были предложены, как для получения фундаментальных знаний о физике плазмы, так и в качестве кандидатов для термоядерных приложений.

    В настоящее время эксперименты с открытыми ловушками ведутся в нескольких лабораториях мира. Исследуется несколько схем открытых ловушек. В частности, установка ГОЛ-3 принадлежит к классу систем с многопробочным удержанием.

    читать дальше

  •  © Бионышева Елена/Сделано у нас

    Институт ядерной физики им. Г.И. Будкера (ИЯФ СО РАН) — один из важнейших мировых центров в области физики высоких энергий и ускорителей, физики плазмы и управляемого термоядерного синтеза.

    В институте проводят эксперименты по физике элементарных частиц, разрабатывают интенсивные источники синхротронного излучения, современные ускорители и лазеры на свободных электронах. По многим направлениям институт является единственным в России.

    Ученые института рассказали корреспондентам информационного портала «Сделано у нас» о важнейших открытиях, полученных в институте и о дальнейших перспективах исследований в области ядерной физики.

    читать дальше

  •  © Бионышева Елена/Сделано у нас

    Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук (ИЯФ СО РАН) был открыт постановлением Совета Министров СССР в 1958 году на базе руководимой Г. И. Будкером Лаборатории новых методов ускорения Института атомной энергии, возглавляемой И.В. Курчатовым. С 1977 года главой Института стал академик Александр Николаевич Скринский, который по сей день является его научным руководителем. С 1 июня 2015 года директором ИЯФ СО РАН был назначен академик РАН Павел Владимирович Логачев.

    Сегодня ИЯФ СО РАН — один из ведущих мировых центров в ряде областей физики высоких энергий и ускорителей, физики плазмы и управляемого термоядерного синтеза. О текущем положении, достижениях, планах и условиях работы журналистам информационного портала «Сделано у нас» рассказали научные сотрудники ИЯФ СО РАН.

    читать дальше

  •  © phototass3.cdnvideo.ru

    Ученые Института ядерной физики Сибирского отделения РАН (ИЯФ СО РАН) разработали и изготовили новый детектор рентгеновского излучения для исследований воздействия потоков плазмы на материал на мегасайенс установке — синхротроне СКИФ, который строится под Новосибирском. Улучшенный детектор позволит значительно ускорить и упростить процесс получения и обработки данных, говорится в сообщении, распространенном в среду пресс-службой института.

    Для экспериментов по изучению воздействия тепловых нагрузок [прежде всего, воздействие потоков плазмы на материал] интервал между кадрами, которые делает детектор, должен составлять 10 микросекунд, <…> от него требуется очень высокая чувствительность. Мы разработали специальный детектор, <…> он [способен регистрировать] практически каждый пролетающий фотон и по этому показателю превосходит предшественника в 10 раз.

    читать дальше

  • ©Видео с youtube.com/ https://www.youtube.com/embed/pQdqCF8VvCA

    ПИК — настоящий ядерный реактор, построенный исключительно для научных целей. Он станет уникальным источником нейтронного излучения. С помощью специальной конструкции пучки нейтронов выводятся из реактора в лабораторные боксы. Нейтроны — электрически нейтральные частицы, поэтому они могут заглянуть внутрь вещества, не разрушая его, то есть нейтронный реактор действует как своего рода супер-микроскоп.

    Все знают, что наука делается в тиши кабинетов и лабораторий, где небольшие команды ученых колдуют над фундаментальными открытиями. Но даже в этом мире есть своя высшая лига.

    Экспериментальные установки, для которых размер имеет значение. Эти научные гиганты напоминают настоящие заводы. Они занимают огромную площадь и строятся десятилетиями. Как правило, ради одного и того же эксперимента. Расположенные в разных частях света, эти чудеса инженерной мысли должны открыть нам самые сокровенные тайны мироздания.

  • Экспериментальная станция «LIGA»

     © ssrc.inp.nsk.su

    НАЗНАЧЕНИЕ СТАНЦИИ.

    а) рентгеновская литография в толстых резистивных слоях для изготовления микроструктур в т. ч. рентгеношаблонов;

    б) экспонирование интенсивным пучком СИ образцов большой площади для методических исследований модификации веществ облучением.

    читать дальше

    •  © cdn25.img.ria.ru

    Ученые из Новосибирска нашли возможное объяснение многим странностям в том, как графен проводит электрический ток, изучая поведение и взаимодействие электронов внутри этого плоского материала. Их выводы были изложены в статье, опубликованной в журнале Physica E.

    Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот. Константин Новоселов и Андрей Гейм, работающие в Великобритании выходцы из России, получили Нобелевскую премию 2010 года по физике за создание этого материала.Он обладает массой парадоксальных и уникальных свойств. К примеру, графен проводит электрический ток и тепло лучше, чем металлы, несмотря на его абсолютно малую толщину, невероятно прочен и прозрачен для видимого света, а также он обладает крайне необычными полупроводниковыми свойствами в комбинации с другими «плоскими» материалами.

    читать дальше

    •  © phototass3.cdnvideo.ru

    Правительство РФ выделило почти 9 млрд руб. на создание приборной базы реакторного комплекса ПИК в Гатчине (Ленинградская область).

    Реактор ПИК — один из мегасайенс-проектов, реализуемых в рамках нацпроекта «Наука». Реактор предназначен для изучения нейтронов, нейтронного излучения, изучения объектов микромира, а также многих других фундаментальных и прикладных научных исследований.

    «Предоставить в 2019 — 2024 годах субсидию из федерального бюджета на осуществление капитальных вложений в техническое перевооружение объекта капитального строительства «Создание приборной базы реакторного комплекса «ПИК», г. Гатчина, Ленинградская область, федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б. П. Константинова Национального исследовательского центра «Курчатовский институт"(мощность, подлежащая вводу, — 20 основных приборов, срок ввода в эксплуатацию — 2025 год)», — говорится в постановлении правительства.

    читать дальше

  • ©Видео с youtube.com/ https://www.youtube.com/embed/eLnbiG7_94g

    Новосибирские ученые работают над созданием ракетного двигателя нового поколения для полетов на Марс. Сегодня в Институте ядерной физики начали серию экспериментов на новейшей установке СМОЛА. Ее только-только запустили. Аналогов нет ни в России, ни в мире.

    Первые испытания уже прошли успешно.

    читать дальше

    • Инжектор, разработанный и изготовленный по заказу ТАЕ
    • Инжектор, разработанный и изготовленный по заказу ТАЕ
    •  © sbras.info

    В Институте ядерной физики им. Г.И. Будкера СО РАН запустили мощный инжектор пучка атомов водорода с проектной энергией частиц до одного миллиона электрон-вольт.

    В этом инжекторе пучок атомов образуется за счет нейтрализации ускоренного до нужной энергии пучка отрицательных ионов водорода. Эта экспериментальная установка была разработана и изготовлена по заказу американской компании TAE Technologies, которая занимается созданием безнейтронного термоядерного реактора. С помощью установки ученые планируют отработать технологию нагрева плазмы в реакторе ТАЕ Technologies и продемонстрировать надежность и высокую эффективность работы всех элементов инжектора.

    ©Видео с youtube.com/ https://www.youtube.com/embed/8C5XF2_NvgU

    читать дальше

    •  © im8.kommersant.ru

    Ученые Института ядерной физики (ИЯФ) Сибирского отделения РАН модернизировали созданный ими генератор синхротронного излучения: им первыми в мире удалось прекратить испарение жидкого гелия, который охлаждал установку и требовал постоянной дозаправки. Улучшенный генератор заработает в итальянской лаборатории ELETTRA в начале 2018 году, сообщила в четверг пресс-служба ИЯФ СО РАН. «Институт ядерной физики СО РАН создал для лаборатории ELETTRA сверхпроводящий вигглер — устройство для генерации синхротронного излучения — в 2003 году, в январе 2018 года сотрудники ИЯФ СО РАН завершат коренную модернизацию этого устройства, в котором впервые удастся избежать испарения жидкого гелия в криогенной системе. Стоимость модернизации оценивается более чем в $500 тыс.», — говорится в сообщении. В вигглере создается сильное магнитное поле, и устройство надо охлаждать с помощью жидкого гелия. «Гелий испаряется, и на дозаправку приходится тратить десятки тысяч долларов в год. Мы научились создавать на основе специальных холодильных машин криостаты, которые могут надежно работать годами без испарения жидкого гелия, что пока не продемонстрировал никто в мире», — цитирует пресс-служба ведущего научного сотрудника ИЯФ СО РАН.

    Лаборатория ELETTRA в Италии — открытая площадка для экспериментов на специализированном ускорителе электронов — источнике синхротронного излучения. С помощью этого излучения проводятся различные исследования: от изучения структуры материалов и новых фармацевтических препаратов до терапии раковых клеток.

    •  © tass.ru

    НОВОСИБИРСК, 25 декабря. /ТАСС/. Ученые Института ядерной физики (ИЯФ) Сибирского отделения РАН в Новосибирске создали и запустили уникальную установку «Смола» (спиральную магнитную открытую ловушку), которая позволит в будущем увеличить нагрев плазмы с 10 млн градусов в несколько раз, сообщил в понедельник журналистам замдиректора ИЯФ СО РАН по научной работе Александр Иванов.

    В перспективе ловушка будет использована в экологичном термоядерном реакторе, работающем без сверхтяжелого водорода.

    «У нас есть установка ГДЛ (газодинамическая ловушка — прим. ТАСС), на которой мы уже нагрели плазму до 10 млн градусов. Если снабдить ее такими элементами (как „Смола“ — прим. ТАСС), то температура плазмы должна вырасти в несколько раз. Эта идея для развития линейных систем движения плазмы выдвинута впервые в мире», — сказал Иванов.

    читать дальше