Российские физики создали сверхточную «квантовую линейку»
Следи за успехами России в Телеграм @sdelanounas_ru- Александр Львовский и Александр Уланов в лаборатории квантовой оптики в РКЦ. Фото: пресс-служба РКЦ.
Физики из Российского квантового центра, МФТИ, ФИАНа и парижского Института оптики придумали, как точнее измерять расстояния. Для того чтобы измерять расстояние в сотни километров с точностью до миллиардных долей метра, они использовали квантовые эффекты. Такая точность нужна для обнаружения гравитационных волн.
Ученые исследовали запутанные квантовые N00N-состояния (произносится: «нун-состояния») фотонов, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. В суперпозиции элементарная частица находится в двух взаимоисключающих состояниях — так лазерный импульс из множества фотонов в суперпозиции пространственных положений одновременно находится в двух точках пространства.
При интерференции N00N-состояния создают полосы, расстояния между которыми меньше длины волны. В оптических интерферометрах — устройствах, которые использовались при открытии гравитационных волн в рамках проекта LIGO, — расстояние между полосами равно длине волны — примерно 0,5-1 микрона. Соответственно, использование запутанных состояний повысит точность измерения.
Но запутанные квантовые состояния «распутываются», когда проходят через среду даже с небольшими потерями. Ученые решили эту проблему, использовав «обмен запутанностями».
«Допустим, у Алисы и Боба, как в физике называют участников обмена квантовыми объектами, есть по запутанному состоянию. Если я возьму одну часть запутанного состояния от Алисы, вторую от Боба и проведу над ними совместное измерение, то оставшиеся части состояний Алисы и Боба тоже станут запутанными, хотя до этого никогда не взаимодействовали», — говорит Александр Львовский, соавтор статьи.
На схеме эксперимента показаны SPCM — однофотонный счетный модуль, который детектировал отдельные фотоны, и гомодинные детекторы Алисы и Боба, расстояние до которых определялось в ходе эксперимента. Иллюстрация из статьи
«В нашем эксперименте Алиса и Боб создают два запутанных состояния и посылают одну из частей в среду с потерями, которую моделирует затемненное стекло. Третий наблюдатель, посередине между Алисой и Бобом, проводит совместное измерение на этих частях. В результате происходит обмен запутанностями: оставшиеся части состояний Алисы и Боба оказываются в состоянии N00N. А поскольку эти части потерь не испытали, они выказывают свои квантовые свойства в полной мере», — объясняет ведущий автор статьи Александр Уланов.
По его словам, потери в стекле соответствовали потерям в атмосфере на расстоянии 50 километров между приемником и передатчиком, а в целом метод позволяет точно измерять расстояния в сотни километров. Для сравнения: длина плеча интерферометра LIGO — около четырех километров.
Результаты исследований опубликованы в журнале Nature Communications.
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈
25.06.1613:18:58
25.06.1614:30:40
26.06.1606:23:43
26.06.1607:32:36
26.06.1608:55:09
26.06.1609:01:15
26.06.1609:07:40
26.06.1609:11:36
26.06.1609:21:53