стань автором. присоединяйся к сообществу!
Лого Сделано у нас
29
Константин Курсиков 17 апреля 2019, 12:18

Российские ученые создали «умные» керамические фильтры для промышленности

Следи за успехами России в Телеграм @sdelanounas_ru

Российские ученые создали нанокомпозитный материал, который улучшит свойства мембран из электропроводной керамики и электрохимических датчиков. Такие мембраны смогут выборочно выделять и пропускать одни ионы и «отвергать» другие, сообщила в среду пресс-служба Сибирского федерального университета (СФУ).

Электропроводящая керамика широко используется для создания мембран, незаменимых в пищевой и химической промышленности, в полиграфии и при производстве текстиля, энергетике и многих других отраслях, где есть необходимость очистки, разделения жидкостей и водоподготовки. Такие мембраны рассчитаны на контакт с различными химическими веществами и могут использоваться при повышенных температурах и высоком давлении, а также для сохранения высокой чистоты процесса.

«Коллективом московских, петербургских и красноярских специалистов предложен новый тип керамических мембран с ионной селективностью на основе нафена, покрытых слоем углерода <…> Регулируя время осаждения, мы научились управлять пористостью мембраны — т. е. формировать поры нужного размера для выделения нужных ионов… Кроме того, мы показали, что в порах керамических мембран на поверхности углерода есть функциональные группы, которые и определяют механизм ионоселективности мембраны», — цитирует пресс-служба одного из авторов исследования, доцента кафедры композиционных материалов и физикохимии металлургических процессов СФУ Михаила Симунина.

В новой разработке ученые применили технологию покрытия фильтрующих мембран, изготовленных из нановолокон оксида алюминия, покрытых углеродом. «Успех самого сочетания в этом композите в том, что нановолокна оксида алюминия задают текстуру, морфологию и каркас для мембраны, а углерод — дает проводимость этой пористой структуре… Мы разработали технологию, при которой углерод оседает не в поры мембраны, заглушая ее, а на ее поверхность», — пояснил Симунин.

Особенности новой технологи

В качестве основы мембраны исследователи взяли нафен, который был впервые получен компанией ANF Technologies (Эстония). Он представляет собой пучок, состоящий из множества нановолокон оксида алюминия. Отдельное волокно имеет диаметр 10-15 нанометров, а его длина может составлять до нескольких сантиметров. Для изготовления мембраны нановолокна отделяют друг от друга, помещают в воду, осуществляют перемешивание с использованием магнитной мешалки и ультразвукового воздействия. Затем полученную субстанцию фильтруют через подложку с крупными порами, добиваясь хаотичного укладывания волокон нафена, полученная структура подвергается тепловому воздействию для придания механической прочности.

Следующим важным шагом для придания мембране проводящих свойств является нанесение углеродного слоя. В специальной печи производится химическое осаждение из газовой фазы при помощи паров спирта и инертного газа. После ряда химических реакций образуется углерод, который «садится» на поверхность мембраны. Результатом этих манипуляций становится способность мембраны проводить электрический ток.

Ученый отметил, что на поверхность нановолокон углерод оседает в виде графита, а далее уже на графит наносится слабоупорядоченный углерод в соответствии с температурой осаждения. «То есть тонкие слои углерода на оксиде алюминия формируются с более совершенной структурой, чем толстые слои. Этот вывод открывает новые перспективы не только в композитных материалах, но и в наноэлектронике графеновых структур», — сказал Симунин.

Помимо ученых СФУ участие в работе приняли исследователи Санкт-Петербургского государственного университета, Национального исследовательского университета «Московский институт электронной техники», Института вычислительного моделирования ФИЦ КНЦ СО РАН, а также Института химии и химической технологии СО РАН. Результаты исследования опубликованы в журнале Thermochimica Acta.

Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈

Вступай в наши группы и добавляй нас в друзья :)


Поделись позитивом в своих соцсетях

Другие публикации по теме


  • 0
    Clausson Clausson
    17.04.1915:20:47

    Maxwell’s demon с последующим плавным переходом к Perpetuum Mobile?    

Написать комментарий
Отмена
Для комментирования вам необходимо зарегистрироваться и войти на сайт,