В МГТУ заработал самый точный российский квантовый процессор
Следи за успехами России в Телеграм @sdelanounas_ruВ НОЦ Функциональные Микро/Наносистемы (НОЦ ФМН) — совместном центре МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА им. Н.Л. Духова» — заработал первый российский высокоточный сверхпроводниковый квантовый процессор. Средняя точность однокубитных операций составила 99,76%, двухкубитных операций — 99,11%, точность считывания — 96,18%. Достигнутые параметры процессора позволили реализовать серию сложных алгоритмов. На квантовом сопроцессоре была смоделирована намагниченность цепочки спинов (модель Изинга в поперечном поле), решено уравнение теплопроводности и реализован алгоритм решения систем линейных уравнений, что прокладывает путь к дальнейшему практическому применению квантовых вычислителей.
Четырехкубитный сверхпроводниковый квантовый процессор Snowdrop 4Q, созданный совместно ФГУП «ВНИИА» и Бауманкой, впервые продемонстрировал точность логических операций свыше 99,11% (в самом современном cверхпроводниковом процессоре IBM Torino 133 (архитектура Heron R1) средняя точность двухкубитных операций составляет 99,14%). Этот показатель стал рекордным для российских многокубитных систем при реализации ряда сложных квантовых алгоритмов. Созданный квантовый вычислитель включает десятки компонентов, среди которых чип квантового процессора, система считывания с параметрическими криоусилителями, блоки управляющей электроники и СВЧ-модули собственной разработки. Архитектура процессора основана на перестраиваемых по частоте кубитах-трансмонах с управляемой связью между кубитами. Чипы квантовой элементной компонентной базы изготовлены по серийной технологии НОЦ ФМН.
Точность — определяющий фактор
Сложные квантовые алгоритмы, нацеленные на решение полезных задач, чрезвычайно требовательны к точностям квантовых логических операций, а также к количеству кубитов, вступающих в состояние квантовой запутанности в ходе реализации квантовых операций."Лучшее испытание квантового процессора — это запустить на нем сложный алгоритм с использованием всех имеющихся кубитов, что мы и сделали, — отмечает Никита Смирнов, ведущий разработчик квантовых процессоров НОЦ ФМН.
— Калибровка и полная характеризация квантовой системы — сложный процесс, и над ним мы работали последние три месяца. Точности логических операций, которых достиг наш чип архитектуры Snowdrop 4Q с высококогерентными кубитами (Scientific Reports volume 14, 7326 (2024)), позволили провести целую серию экспериментов, каждый из которых в перспективе направлен на решение практических задач ФГУП «ВНИИА»".
Первичная инициализация квантового процессора до штатной работы в составе суперкомпьютера — нетривиальная задача, довольно сложная процедура настройки и калибровки, которая может занимать длительное время и использовать алгоритмы машинного обучения для определения оптимальных параметров управляющих сигналов. На первом этапе команде необходимо охарактеризовать процессор, то есть измерить параметры качества кубитов.
Сначала работают с каждым кубитом индивидуально: приводят в возбужденное состояние и «снимают мерки»: время релаксации T1 (время, за которое кубит переходит из возбужденного в основное состояние) и время когерентности T2 (время, в течение которого кубит сохраняет квантовую информацию). Время T2 включает два типа: Рамзи (чувствительное ко всем видам шумов) и эхо (нечувствительное к низкочастотным шумам).
Далее следует итеративная и многоэтапная процедура калибровки однокубитных и двухкубитных квантовых логических операций — составляющих квантового алгоритма. При калибровке точности однокубитных операций сначала работают с каждым кубитом отдельно, приводя все соседние кубиты в состояние покоя. Но уже сразу после калибровки всех кубитов поодиночке оптимизируют точность однокубитных операций при одновременной работе соседних кубитов. Именно так — одновременно — кубиты должны работать в практически полезных алгоритмах, и именно эту точность необходимо учитывать при сравнении квантовых процессоров. На следующем этапе оперируют парами кубитов для калибровки двухкубитных операций. В ходе калибровки оценивается точность однокубитных и двухкубитных операций, а также точность считывания. Только проведя полную характеризацию системы, можно сказать, насколько процессор готов к настоящей работе. На процессоре НОЦ ФМН среднее время релаксации кубитов (T1) составило 47,7 микросекунды, время когерентности (T2) — 32,5 микросекунды, при длительности однокубитных операций — 40 наносекунд, двухкубитных операций (CZ) — 110 наносекунд.
Команде алгоритмистов ФГУП «ВНИИА им. Н.Л. Духова» удалось провести на квантовом процессоре симуляцию динамики системы из четырех спинов (модель Изинга в поперечном поле) для решения задач в области квантового магнетизма. В рамках эксперимента ученые опробовали собственный метод смягчения ошибок (error mitigation), основанный на нейросетевом обучении (Quantum Inf Process 21, 93 (2022). В качестве бенчмаркинга реализованные алгоритмы были опробованы на 127-кубитных процессорах IBM в облачном доступе.По итогам сравнения процессор Snowdrop 4Q показал сопоставимые по достоверности результаты алгоритмов (fidelity).
Помимо этого, на процессоре Snowdrop 4Q реализована оригинальная модификация сложного квантового алгоритма Харроу-Хассидима-Ллойда (HHL) из более 100 квантовых логических операций для численного решения системы линейных уравнений (Phys. Rev. A 107, 042408 (2023)). Этот алгоритм особенно требователен к точности операций и считывания квантовых процессоров.
Квантовый сопроцессор для задач классической физики
В МГТУ им. Н.Э. Баумана и ВНИИА реализуется и разрабатывается ряд практически значимых квантовых алгоритмов, позволяющих значительно ускорить решение важных задач физического моделирования. Для этого используется подход, в котором квантовый чип выступает в роли сопроцессора для классического компьютера. Именно квантовый сопроцессор выполняет наиболее трудную для традиционной микроэлектроники (архитектура x86) подзадачу при моделировании физического процесса. Так, в НОЦ ФМН был реализован вариационный квантовый алгоритм для решения уравнения теплопроводности, разработанный теоретиками ФГУП «ВНИИА» (Phys. Rev. A 107, 052422 (2023)). В таком алгоритме решение ищется в виде взвешенной суммы известного большого набора пробных функций. Алгоритм подбирает оптимальный набор весов, минимизируя функцию потерь на классическом компьютере, а сама функция потерь вычисляется на квантовом сопроцессоре. Данный подход позволяет достичь экспоненциального выигрыша в скорости вычислений и обладает низкой чувствительностью к ошибкам квантовых операций. Проведенный в НОЦ ФМН эксперимент продемонстрировал помехоустойчивость алгоритма: экспериментально полученная достоверность результатов (fidelity) всего алгоритма составила 98,8%, что близко к его теоретическому пределу при решении задачи на 8 пространственных узлах (3 кубита).
«Мы достигли знакового результата, к которому шли почти три года — от разработки эффективного квантового алгоритма до его запуска на квантовом „железе“, — говорит Александр Андрияш, научный руководитель ФГУП „ВНИИА им. Н.Л. Духова“. — Убедились в том, что наш подход работает и, более того, прокладывает путь к созданию практически полезного вычислителя. В планах — дальнейшее улучшение уже серийных технологий изготовления квантовых устройств и увеличение количества кубитов с повышением точности квантовых операций».
Работа над созданием сверхпроводниковых квантовых процессоров и разработка квантовых алгоритмов проводятся командой ФГУП «ВНИИА» совместно с МГТУ им. Н.Э. Баумана в рамках программы «Приоритет 2030» и совместного проекта с Фондом перспективных исследований.
Информация и фото предоставлены НОЦ Функциональные Микро/Наносистемы МГТУ им. Н.Э. Баумана
Разместила Ирина Усик
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈
02.07.2407:36:34
03.07.2412:15:27
03.07.2413:28:39
03.07.2413:42:21
03.07.2418:25:13
03.07.2416:35:04
03.07.2418:45:49
04.07.2415:42:12
04.07.2416:10:11
04.07.2408:49:20
04.07.2415:48:21
04.07.2416:03:29