Учёные научились запирать электромагнитные волны в одномерных слоистых структурах
Следи за успехами России в Телеграм @sdelanounas_ruУчёные Федерального исследовательского центра «Красноярский научный центр СО РАН» и Сибирского федерального университета вместе с коллегами из Тайваня впервые в мире экспериментально реализовали так называемые связанные состояния в континууме в одномерных слоистых структурах, возникающие из-за точной деструктивной интерференции света с различными поляризациями. Исследование открывает путь к созданию высокодобротных управляемых устройств фотоники и спинтроники. Результаты исследования опубликованы в журнале Nature Communications Physics.
Огромное количество наблюдаемых нами физических явлений связано с волнами: акустическими, электромагнитными, квантово-механическими электронными волнами вероятности и другими. Несмотря на принципиальные различия, в поведении разных волн можно найти общие закономерности. Одно из таких интригующих явлений — связанное состояние в континууме — было предсказано еще в 1929 году физиками Нейманом и Вигнером для электронных волн в квантовой механике. Это явление связано с деструктивной интерференцией или способностью проходящих и отраженных волн гасить друг друга.
Чтобы лучше понять, что такое деструктивная интерференция, можно представить две волны на поверхности воды, проходящие друг через друга. Если в одной и той же точке совпадут гребень первой волны и ложбина второй, то водная поверхность будет выглядеть невозмущенной. В случае квантовой частицы, деструктивная интерференция проходящих и отраженных волн запирает её в точке пространства, хотя энергии частицы достаточно, чтобы уйти из зоны притяжения.
В силу сложности математического описания, связанные состояния в континууме долго рассматривались как экзотика, привлекавшая внимание лишь теоретиков. В 1985 году немецкие теоретики Фридрих и Винтген предложили простую модель открытой квантовой системы, описывающую запирание квантовой частицы за счет деструктивной интерференции двух резонансов. Эта модель послужила основой для работы в 2008 году красноярских физиков Булгакова и Садреева о локализации света в двумерном фотонном кристалле, которая спустя три года получила экспериментальное подтверждение. Эти работы дали начало потоку статей о связанном состоянии в континууме для двумерных и трехмерных фотонных кристаллов. В то же время считалось, что в одномерных слоистых структурах такое явление невозможно.
Коллектив ученых из Красноярск и Тайваня опроверг это представление. Исследователи Федерального исследовательского центра «Красноярский научный центр СО РАН» и Сибирского федерального университета показали теоретическую возможность существования связанного состояния в континууме в одномерных слоистых структурах. Для этого физики предложили новую модель, которая состоит всего из трех слоев. При прохождении электронной волны через центральный слой, в котором магнитное поле повернуто относительно двух крайних слоёв, она расщепляется на две. При выходе в третий слой эти волны накладываются и гасят друг друга, таким образом, электрон запирается и остаётся в трехслойной структуре.
Экспериментальная проверка теоретических построений оказалась не простым делом. Для работы с электронами необходимо создавать полупроводниковые структуры высокого качества, прикладывать магнитное поле на очень малых масштабах и охлаждать
электроны в сверхнизких температурах. Так как связанное состояние в континууме общеволновое явление, учёные решили создать аналогичную систему для световых волн. Ученые из Тайваня в рамках совместного международного проекта на основе теоретических расчетов и модели красноярских физиков изготовили трехслойную фотонную структуру и провели необходимые измерения.
Оптический аналог крайних областей с одинаково направленным магнитным полем — одномерные фотонные кристаллы. Аналог центрального слоя с повернутым магнитным полем — жидкий кристалл с повернутой оптической осью. Жидкий кристалл является анизотропным веществом,
«Мы впервые реализовали связанные состояния в континууме в одномерных слоистых средах для оптических волн. Нам удалось экспериментально показать, что можно управлять добротностью такой системы. Добротность — это характеристика колебательной системы, которая показывает, как быстро система теряет запасенную энергию. Световая энергия не может выйти из связанного состояния в континууме, поэтому его добротность ограничена только неустранимыми потерями в самих материалах. Механически поворачивая оптическую ось жидкого кристалла, мы увеличивали или уменьшали добротность, приближаясь или отдаляясь от условий реализации связанного состояния в континууме. Жидкий кристалл очень чувствителен к внешним воздействиям, поэтому дальнейшее направление исследований — это демонстрация управления добротностью с помощью температуры или внешнего электрического поля. Предложенные в работе модели открывают путь к созданию управляемых устройств спинтроники и фотоники», — рассказал один из авторов работы, кандидат физико-математических наук, научный сотрудник Института физики им. Л. В. Киренского Красноярского научного центра СО РАН Павел Панкин.
Исследование поддержано Российским фондом фундаментальных исследований (гранты№ 19-52-52006и 19-02-00055).
Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈