стань автором. присоединяйся к сообществу!
Лого Сделано у нас
19

Супергидрофобные покрытия для электропроводов ЛЭП

Следи за успехами России в Телеграм @sdelanounas_ru

Времена, когда человечество обходилось костром, печкой или паровым котлом, давно миновали. Людям нужно электричество, и чем дальше, тем больше. Нам бы хотелось, чтобы оно было дешёвым, но его доставка потребителям обходится дорого. Российский климат не благоприятствует энергетике: коррозия разъедает опоры ЛЭП, в плохую погоду снег и лёд покрывают провода, вызывая повреждение линий, устранение неполадок требует много времени, сил и средств. С такими же проблемами сталкиваются многие северные страны, а также Китай и Япония. В последние годы учёные разных стран исследуют возможность защитить провода и конструкции ЛЭП с помощью специальных покрытий. Специалисты Института физической химии и электрохимии им. А.Н. Фрумкина РАН разработали и испытали супергидрофобные покрытия, которые помешают проводам обледенеть, а если такое всё же произойдёт, ото льда будет несложно избавиться.

Испытание супергидрофобных покрытий в потоке водного аэрозоля при температуре -5 °С и скорости ветра 10 м/с. Спустя минуту на алюминиевом образце без покрытия уже появляется слой льда  

Налипание снега и льда на провода и опоры ЛЭП – большая проблема. Особенно опасны ледяные дожди, когда капли переохлаждённой жидкости попадают на металлическую поверхность, имеющую температуру ниже нуля. Вспомним хотя бы ледяной дождь, прошедший в декабре 2010 года над Центральной Россией. В результате только на территории Московской области было одновременно отключено 217 высоковольтных линий, 134 высоковольтных питающих центра 220 кВ, а также более 10 тысяч трансформаторных подстанций.

С обледенением линий борются, конечно. Чаще всего используют механические методы, но они требуют доступа к ЛЭП, что нарушает нормальную работу участка. К тому же механическое воздействие не препятствует обледенению, а устраняет его. Можно повысить сопротивление проводов, пропуская по ним ток в особом режиме. Провода нагреются, и лед расплавится, но этот метод приведёт к потере энергии. В последние годы для борьбы с обледенением стали активно применять растворы, которые замерзают при температурах значительно более низких, чем вода. Эти жидкости хороши в дорожном хозяйстве и авиации, но при транспортировке энергии малоэффективны. Срок действия таких «незамерзающих жидкостей» недолог, а регулярно наносить их на сотни, а то и тысячи километров проводов нереально. Все перечисленные способы требуют постоянного активного участия персонала, затрат энергии или химических реактивов, а иногда небезопасны для окружающей среды. Экономичнее делать провода и опоры ЛЭП из таких материалов, на которых вода не задерживается, а потому и не намёрзнет.

Сравнительные испытания алюминиевых проводов в условиях выпадения ледяного дождя (температура воздуха -4 °С, влажность воздуха 97%)

Вот что рассказала в интервью STRF.ru главный научный сотрудник ИФХЭ РАН член-корреспондент РАН, доктор физико-математических наук Людмила Бойнович:

«Одна из отличительных особенностей супергидрофобных материалов – самоочистка поверхности от пыли и других твёрдых частиц при её контакте с каплями жидкости. Дело в том, что даже при очень малых наклонах супергидрофобной поверхности капли воды не соскальзывают по ней, а скатываются. Благодаря водоотталкивающим свойствам поверхности, на ней практически не скапливается вода, которая может кристаллизоваться. Кроме того, уже образовавшийся лёд, изморозь или мокрый снег к таким поверхностям прилипают плохо и осыпаются с проводов под действием собственного веса или ветра».


На алюминиевую пластину с супергидрофобным покрытием (сверху) не налипает снег. Снимок сделан в условиях снегопада при температуре воздуха -3 °С, влажности 99% и скорости ветра 2 м/с

Специалисты Института физической химии и электрохимии им. А.Н. Фрумкина РАН и Института проблем механики им. А.Ю. Ишлинского РАН показали, что с алюминиевых поверхностей, на которые нанесено супергидрофобное покрытие, лёд легко удалить. Учёные работали с одножильными и многожильными алюминиевыми проводами. Сначала электрохимическими методами обрабатывали провода, в результате чего их поверхность становилась шероховатой – на ней возникали микро- и нанорельеф. Затем на шероховатую поверхность наносили гидрофобный агент – фтороксисилан. На таких поверхностях вода контактирует с материалом только по выступающим частям рельефа, то есть площадь реального контакта между жидкостью и материалом уменьшается в несколько раз. А чем меньше площадь контакта, тем меньше сцепление воды и льда с поверхностью.

Учёные давали образцам обмёрзнуть, а потом определяли, какие усилия нужны, чтобы вытянуть или выкрутить провод из ледяного чехла. Оказалось, что на супергидрофобных поверхностях капли воды почти не растекаются и легко скатываются при углах наклона поверхности меньше 15°. При супергидрофобизующей обработке прочность соединения льда с алюминием уменьшается в 2,6 раза, если из ледяного чехла приходится выкручивать многожильный кабель, и в 5–10 раз, когда вытягивают провод. При этом следов льда на освобождённом проводе не остаётся. От многократного повторения этой процедуры качество покрытия практически не пострадало, оно оказалось стойким к механическим нагрузкам. Поэтому супергидрофобное покрытие можно считать льдофобным. Оно хорошо переносит циклические перепады температур от -18 °С до +25 °С, свойственные средней полосе России.

«Чтобы получение супергидрофобного покрытия превратилось из искусства в технологию, необходим определённый уровень развития нанотехнологий, – поясняет Людмила Бойнович. – Нанотолщина слоя гидрофобного агента позволяет добиться максимальной механической стойкости контакта материала и покрытия и минимизировать его расход. Нанесение более толстого слоя гидрофобного агента может привести к отслаиванию покрытия при колебаниях температуры. Кроме того, нанокривизна элементов текстуры на поверхности позволяет эффективно повышать её гидрофобность».

Исследователи отмечают, что полученные ими супергидрофобные покрытия можно рассматривать как эффективное средство борьбы с обледенением и накоплением снега на алюминиевых элементах ЛЭП.

Работа выполнена при финансовой поддержке Президиума РАН (программа фундаментальных исследований № 24 «Фундаментальные основы технологий наноструктур и наноматериалов») и Совета при Президенте РФ по грантам и государственной поддержке ведущих научных школ.

Источник информации:

  • L.B. Boinovich, A.M. Emelyanenko, Anti-icing potential of superhydrophobic coatings. Mendeleev Communications, 2013, 23, 3–10;
  • Л.Б. Бойнович и др. «Адгезионная прочность контакта льда с супергидрофобным покрытием». Доклады Академии наук, 2013, том 448, № 6, с. 675–679.

Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈

Написать комментарий
Отмена
Для комментирования вам необходимо зарегистрироваться и войти на сайт,