MAX
Подпишись
стань автором. присоединяйся к сообществу!
27 июля 557
116

КРЭТ создал экспериментальный образец фотонного радара для истребителя шестого поколения

Концерн «Радиоэлектронные технологии» (КРЭТ) создал экспериментальный образец радиофотонного радара для истребителя шестого поколения, который придет на смену Т-50. Экспериментальный образец передает, принимает и обрабатывает сигнал, сообщил в интервью советник первого заместителя гендиректора КРЭТ Владимир Михеев.

По его словам, продвижение в работах по созданию бортового радиоэлектронного оборудования для летательного аппарата шестого поколения есть, и в частности в отношении радио-оптической фотонной антенной решетки его бортового локатора.

«В НИР [научно-исследовательской работе] на основе экспериментального образца построен и излучатель, и приемник. Все это работает, ведет локацию — излучаем СВЧ- сигнал [сверхвысокочастотный], он отражается назад, мы его принимаем и обрабатываем, получаем радиолокационную картинку объекта. Смотрим, что нужно сделать, чтобы она была оптимальной», — рассказал он.

Михеев отметил, что «сейчас в рамках научно- исследовательской работы создается полноценный макет этой радио-оптической фотонной антенной решетки, который позволит отработать характеристики серийного образца». «Мы поймем, каким он [радар] должен быть, в каких геометрических размерах, на каких диапазонах и на какой мощности должен работать», — уточнил представитель КРЭТ.

Концерн также отрабатывает технологии конкретных элементов нового радара — его излучателя, фотонного кристалла, приемного тракта, резонаторов.

«Серийный образец локатора сделаем, когда перейдем на этап опытно-конструкторской работы [ОКР], например, по заказу военного ведомства», — отметил Михеев.

[читать статью полностью...]

Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в наш Телеграм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈

Источник: tass.ru

Комментарии 0

Для комментирования необходимо войти на сайт

  • 15
    Vsemoguchij Vsemoguchij27.07.17 11:03:28

    Кратко (общая информация из открытых источников) всё просто: Используется непрерывный стабилизированный лазер, амплитудные модуляторы и узкополосные оптические фильтры для преобразования радиолокационного сигнала в диапазон низких частот.Оптическая несущая и одна из боковых полос могут быть подавлены с помощью оптических полосовых фильтров на основе, например, микрорезонаторов или волоконных брегговских решеток.

    Часть лазерного луча модулируется по амплитуде несущим СВЧ сигналом и также фильтруется для подавления оптической несущей и одной из боковых полос.

    После этого оптические сигналы, содержащие принимаемый сигнал и сигнал СВЧ несущей, могут быть смешаны на фотоприемнике и оцифрованы медленным электронным АЦП.

    Для современных оптических элементов отношение сигнал/шум на выходе преобразователя может достигать 60-70 дб и более для СВЧ сигнала с несущей в десятки гигагерц и полосой 100 МГц и выше.

    Работа радиофотонного приемного канала с оптическим гетеродинированием может быть использованы в исследованной схеме для ее применения в качестве универсального приемного канала, обеспечивающего ширину полосы до 100 МГЦ (длительность сигналов до 10 нс) с частотой несущей в десятки ГГц при отношении сигнал/шум, равном 60-70 дб (10-11 эффективных бит оцифрованного сигнала). Перспективным может быть также применение режима подавления несущей оптической частоты в модуляторах приемного канала. В этом случае в несколько раз повышается отношение сигнал/шум, а также не требуется использовать узкополосные оптические фильтры в схеме.

    Радиофотоника, изучающая взаимодействие оптических и СВЧ-сигналов, позволяет создавать электронные устройства с параметрами, недостижимыми традиционными средствами.

    Фото блоков стенда: блок оптического приемника; блок оптического передатчика с линией задержки; катушка с оптоволоконным кабелем (тренога с рупорной антенной не показана).

    Основные преимущества радиофотонных устройств:

    Сверхнизкие потери и дисперсия оптического волокна (менее 0.2 дБ/км на 1550 нм, оптическая несущая ~200 ТГц).

    Сверхширокополосность (доступная полоса частот оптического волокна ~50ТГц, полоса частот современных фотодиодов и модуляторов до 100 ГГц и выше).

    Низкий уровень фазовых шумов (процесс прямого оптического детектирования с помощью фотодиода не восприимчив к фазе оптического излучения (к фазе и фазовым шумам оптической несущей).

    Высокая фазовая стабильность оптического волокна. Невосприимчивость к электромагнитным помехам, не создает помехи.

    Гальваническая развязка фотонных схем.

    Малая масса и размеры оптического волокна.

    Механическая гибкость оптического волокна (облегчает конструктивное исполнение).

    Некоторые проблемы радиофотонных устройств:

    Амплитудный шум и ослабление, вносимое модуляцией-демодуляцией оптического сигнала (коэффициент шума канала обычно 10 ÷ 30 дБ, ослабление до 30 дБ, что заставляет применять малошумящие усилители на входе, и линейные усилители на выходе, со всеми их недостатками).

    Ограниченный динамический диапазон, связанный с нелинейностью оптических модуляторов и прямой токовой модуляции полупроводниковых лазеров.

    Отредактировано: Vsemoguchij~11:13 27.07.17
    • 2
      Нет аватара srustemr27.07.17 12:18:20

      Разжувал, даже я понял        Блин, америкосы не повторят?   

      • 4
        Vsemoguchij Vsemoguchij27.07.17 13:15:26

        Эти работы ведут все и естественно США, а физические принципы известны давно      

      • 0
        Нет аватара nik.f29.07.17 15:50:45

        В Китае такой радар проходит испытания. Из США новостей в открытых источниках пока не было.

    • 0
      Нет аватара guest13.07.18 09:55:45

      В интервью говорится о фотонном передатчике, а у вас о приёмниках.

      • 0
        Нет аватара guest17.06.19 22:52:58

        В современной радиолокации вместо прежних древних фильтровых РЛС господствуют корреляционные, в которых уже нет абсолютного разграничения приемника с передатчиком. В передатчике используются при формировании, преобразовании и усилении сигнала те же гетеродинные и иные опорные сигналы, что и в приемнике, что обеспечивает когерентность зондирующего сигнала и его высокую корреляцию с опорными сигналами в приемнике, в том числе и с возможными искажениями и шумами при формировании.