стань автором. присоединяйся к сообществу!
Лого Сделано у нас
37
artal 18 января 2023, 13:49

Российский ученый открыл новый фундаментальный механизм хранения информации в ДНК

Следи за успехами России в Телеграм @sdelanounas_ru

 © siriusuniversity.ru

Исследователь из России открыл механизм «молекулярной коммутации» ДНК, который меняет наше представление об одной из главных парадигм биологии. Более 70 лет считалось, что ДНК хранит и обрабатывает информацию за счет структуры двойной спирали — однозначно-соотвествующих друг другу (комплементарных) молекулярных цепей. Руководитель направления «Нанобиомедицина» Университета «Сириус», заведующий лабораторией МФТИ Максим Никитин экспериментально доказал, что для эффективной обработки генетической информации ДНК совершенно не обязательно образовывать двойную спираль. ДНК может хранить и передавать информацию за счет слабоаффинных взаимодействий, реализующийся в том случае, когда молекулы имеют низкое сродство друг к другу. Более того, он показал, что короткая ДНК, даже максимально некомплементарная гену, может регулировать его работу.

Результаты исследования опубликованы в одном из самых авторитетных научных журналов Nature Chemistry. Открытый фундаментальный феномен может быть ключом к познанию природы самых разнообразных процессов: от неразгаданных тайн генетики, сложных заболеваний, мгновенной памяти и старения до вопросов возникновения жизни на Земле и её эволюции. Кроме этого, позволит качественно улучшить специфичность генной терапии и безопасность ДНК/РНК вакцин за счет выявления и снижения побочных реакций на препараты во время лечения.

На протяжении последних 70 лет представление биологов о хранении и передаче информации базировалось на гениальном открытии структуры ДНК Уотсоном и Криком: «молекула ДНК имеет две спирально закрученные цепи, которые связаны парами оснований аденин — тимин или гуанин — цитозин». Сформулированный закон «комплементарности» о строгой специфичности пар азотистых оснований («кирпичиков» структуры ДНК) при формировании «двойной спирали» стал фундаментальным принципом в основе механизмов передачи информации в ДНК и процессов управления работой генов. Элегантная модель двойной спирали прекрасно показывала возможность восстановления одной цепи за счет другой и объясняла молекулярную сущность процессов передачи наследственной информации. Эта красота и понятность выстроенной в середине ХХ века модели долгое время закрывала ученым глаза на существование иных взаимодействий, существующих в живых объектах.Руководитель направления «Нанобиомедицина» Университета «Сириус», заведующий лабораторией МФТИ Максим Никитин в своей статье, опубликованной в журнале Nature Chemistry, представил экспериментальные доказательства того, что ДНК вполне способна эффективно хранить и передавать информацию и без комплементарности цепей знаменитой двойной спирали.Единственный автор статьи (что крайне редко встречается в столь авторитетных журналах), Никитин открыл природное явление, названое им «молекулярной коммутацией». Молекулярная коммутация заключается в переносе информации при взаимодействии относительно коротких одноцепочечных молекул ДНК/РНК (олигонуклеотидов) или других молекул. Максим Никитин заметил, что в смеси, состоящей из коротких одноцепочечных и некомплементарных друг другу олигонуклеотидов, одновременно будут сосуществовать самые различные их комплексы. Варианты этих взаимодействий определяются «сродством» молекул и в общем случае описываются открытым еще в 19 веке законом действующих масс о зависимости скорости реакции от концентрации участвующих веществ. При этом такие комплексы будут связаны друг с другом и будут передавать информацию между собой, даже если какие-то два олигонуклеотида не связываются друг с другом напрямую. Например, в самой простой системе из трех олигонуклеотидов Х, А и В: если, А и В не взаимодействуют друг с другом, они все равно могут передать друг другу информацию через посредника — «коммутатор» Х. При этом каждому из них достаточно взаимодействовать с Х очень слабо: увеличение концентрации, А приведет к росту количества комплексов ХА, что снизит число комплексов ХВ, хотя, А никак не взаимодействовало с В напрямую. Если же в системе находится большее количество олигонуклеотидов, то можно добиться передачи значительного объема информации.

«Я обратил внимание на необычное свойство ДНК, которое ровно 70 лет оставалось незамеченным — в тени красоты двойной спирали. А именно на то, что для любой одноцепочечной ДНК (оцДНК) существует великое множество других оцДНК с практически любой наперед заданной аффинностью — свойство, которое я назвал «континуумом аффинностей ДНК», — делится руководитель направления Университета «Сириус» Максим Никитин. — «Например, возьмем олигонуклеотид из 10 оснований. Тогда полностью комплементарный ему олигонуклеотид, будет иметь максимальную силу сродства — аффинность. Если же начать постепенно заменять во втором олигонуклеотиде азотистые основания на произвольные, то их аффинность первому будет падать. При этом, перебирая все варианты оцДНК из 10 букв, для каждой аффинности мы получим множество вариантов, т. е. плотный «континуум аффинностей».

Для того, чтобы доказать, что ДНК может образовывать наборы молекул с практически любыми наперед заданными взаимными аффинностями, в своей статье Максим Никитин показывает экспериментальную реализацию большого разнообразия систем, которые по-разному обрабатывают информацию, начиная с систем, включающих всего 3 суперкоротких олигонуклеотида длиной в 7 азотистых оснований, до ячеек памяти, систем вычисления квадратного корня и др. При этом компьютерное моделирование явления коммутации продемонстрировало устойчивую обработку информации и системой, состоящей из 1000 олигонуклеотидов. Это позволяет создать 572-битную ячейку обработки информации, что превосходит битность всех существующих электронных компьютеров. Примечательно, что предложенная Никитиным модель концептуально вообще не имеет ограничения по числу взаимодействующих таким образом олигонуклеотидов.

Кроме того, открытое Никитиным явление позволило ему экспериментально показать и другой удивительный, не укладывающийся в современную парадигму молекулярной биологии факт: любая неструктурированная одноцепочечная ДНК может специфично регулировать экспрессию заданного гена безотносительно их взаимной комплементарности. Все зависит от наличия в среде или организме других олигонуклеотидов (также некомплементарных).

Более того, автор показал, что молекулярная коммутация дает возможность лучше управлять экспрессией генов. Если в рамках стандартной парадигмы комплементарный механизм регуляции допускает приблизительно 1012 вариантов регулирования генов (в таком случае существует всего 420=1012 разных 20-нуклеотидных олигонуклеотидов), то Никитин показал, что используя те же 20-нуклеотидные последовательности, можно реализовать не менее 10172 вариаций регуляции работы гена. Это число значительно превосходит количество элементарных частиц во Вселенной, которых «всего» 1080!

Открытый фундаментальный феномен коммутации цепей ДНК имеет важное практическое значение. Анализ возможных слабоаффинных взаимодействий с точки зрения молекулярной коммутации может улучшить специфичность генной терапии и безопасность ДНК/РНК вакцин за счет выявления и снижения побочных (нецелевых) действий вводимых препаратов. Для этого требуется создание программного обеспечения нового поколения, более точно предсказывающего слабоаффинное взаимодействие нуклеиновых кислот, а также анализирующего их вовлечение в различные естественные процессы, принимая во внимание механизм молекулярной коммутации. В конечном итоге все это поможет минимизировать риски негативных последствий нецелевого редактирования генома пациента и снизить число нежелательных явлений в процессе лечения.

Необходимо отметить, что в молекулярной коммутации могут участвовать не только нуклеиновые кислоты. Белки и малые молекулы также могут взаимодействовать по этому принципу, просто предсказать их взаимные аффинности в настоящее время, к сожалению, все еще очень сложно. Но уже сейчас понятно, что продемонстрированное явление коммутации, будучи фундаментальным и естественным механизмом взаимодействия молекул друг с другом, может быть ключом к познанию природы самых разнообразных процессов: от неразгаданных тайн генетики, сложных заболеваний, мгновенной памяти и старения до вопросов возникновения жизни на Земле и её эволюции. Все это открывает обширное поле для междисциплинарного сотрудничества ученых из совершенно различных областей знания.

Кстати, а вы знали, что на «Сделано у нас» статьи публикуют посетители, такие же как и вы? И никакой премодерации, согласований и разрешений! Любой может добавить новость. А лучшие попадут в телеграмм @sdelanounas_ru. Подробнее о том как работает наш сайт здесь👈


  • artal
  • 2
  • 0
    Нет аватара termometrix
    19.01.2313:19:06

    Революционное открытие!

  • 1
    Нет аватара brat_po_razumu
    20.01.2318:12:42

    С огромным удовольствием — вот просто с кайфом! — прочитал полноразмерную статью (у меня есть доступ к полному тексту). Если у нас тут еще есть специалисты в этом направлении, ну или просто кому интересно — могу pdf выслать.

Написать комментарий
Отмена
Для комментирования вам необходимо зарегистрироваться и войти на сайт,