•  © img.c-inform.info

    Ученые Крымского федерального университета (КФУ) имени В.И. Вернадского разработали наноантенну, которая позволит создать более емкие каналы связи и увеличить КПД фотоэлектрических преобразователей более чем на 10%, снизив их стоимость. Об этом сегодня сообщила пресс-служба КФУ, ссылаясь на публикацию в журнале Journal of Physics: Conference Series.

    «Наноантенны — широкий класс инструментов, которые способны напрямую преобразовывать свет в электрическую энергию. Простота изготовления наноантенн позволяет снизить стоимость конечных устройств. Однако диапазон длин волн, в которых наноантенна способна эффективно работать, довольно узок. Для увеличения диапазона обычно используются наборы наноантенн, но они занимают большую площадь», — цитирует пресс-служба доцента кафедры радиофизики и электроники Физико-технического института КФУ Дмитрия Полетаева.

    Для решения этой проблемы ученые КФУ разработали конструкцию широкополосной наноантенны, способной эффективно излучать и принимать электромагнитные волны в широком диапазоне. Она содержит точечный оптический источник, точечный приемник излучения, основную и дополнительную полоску из проводящего материала. «В качестве точечного оптического источника может использоваться многослойный полупроводниковый светодиод. Длина основной полоски из проводящего материала, например, из меди, может составлять 95 нанометров, а ее толщина — около 5 нанометров», — добавил Полетаев.

    По его словам, такая наноантенна позволяет увеличить КПД фотоэлектрических преобразователей более чем на 10%, а также снизить стоимость не менее чем на 5%. Практическое значение исследования состоит также в возможности реализации более емких каналов связи за счет внедрения разрабатываемых структур в оптоволоконные передатчики и приемники связи. На разработку уже получен патент Российской Федерации.

  • Спутниковая связь на территории РФ приобретает большую популярность. Удаленноть регионов друг от друга, необходимость оснащения связью различного транспорта, а также зачастую неспособность мобильных операторов предоставить качественную и бесперебойную связь в движении — все эти сложности легко преодолеть со спутниковым оборудованием и дать возможность людям своевременно и в необходимых объемах обмениваться информацией.

    Однако, есть несколько нюансов в получении услуг спутниковой связи. Самая большая сложность — отсутствие на рынке оборудования российского производства(до недавнего времени).

    Стоимость зарубежного оборудования, возможность решить технические вопросы, правильно настроить и установить, а также долгие сроки поставки такого оборудования — все эти факторы не дают возможности потребителю, как частному лицу, так и,скажем, судовладельцу или крупной транспортной компании пользоваться спутниковой связью.

    читать дальше

  •    Астрокосмический центр ФИАН докладывает о результатах первых наблюдений полученных с помощью проекта РадиоАстрон начиная с февраля 2012 года.
        Первым результатом было получение "изображения" компактного ядра галактики 0716+714. Этот эксперимент был проведен РадиоАстроном с участием европейской сети радиотелескопов, включая телескопы российской системы "Квазар-КВО", а также телескопы в Евпатории (Украина) и Усуде (Япония). Несмотря на то, что объект находился в минимальной фазе активности, РадиоАстрон позволял вести наблюдение совместно со многими наземными антеннами при удалении космической обсерватории вплоть до 5.2 диаметров Земли.

       Помимо этого эксперимента, продолжается и массовый обзор ядер активных галактик во всех диапазонах РадиоАстрон. Рекордный на сегодня результат - обнаружение компактных деталей в ядре далекой галактики OJ287 при удалении космической обсерватории на расстояние в 7 диаметров Земли.

    • Рекордное изображение галактики OJ287 на порядок лучше максимально достижимого с помощью наземных радиотелескопов и в сотни раз лучше разрешающей силы космического телескопа им. Хаббла.
    • Рекордное изображение галактики OJ287 на порядок лучше максимально достижимого с помощью наземных радиотелескопов и в сотни раз лучше разрешающей силы космического телескопа им. Хаббла.

    читать дальше