-
Во Всероссийском научно-исследовательском институте технической физики им. Е.И. Забабахина" (РФЯЦ-ВНИИТФ) разработаны и изготовлены опытные образцы лазеров мощностью 200, 400, 700 и 1000 Вт для использования в 3D-принтерах, работающих по технологии селективного лазерного плавления (SLM).
Разработка выполнена в рамках НИОКР «Лазеры», куратором которого выступает отраслевой интегратор «Русатом — Аддитивные технологии» (ООО «РусАТ»; предприятие Топливной компании Росатома «ТВЭЛ»).
Весь модельный ряд лазерных систем пройдет комплекс испытаний на площадке РФЯЦ — ВНИИТФ, после чего лазеры будут переданы в московский Центр аддитивных технологий ООО «РусАТ» для отработки на принтерах RusMelt 300M и RusMelt 600M. До конца 2021 года планируется провести полный цикл испытаний лазерных источников в соответствии с требованиями ГОСТ и подготовить продуктовую линейку к запуску в серийное производство.
-
©Видео с youtube.com
Видеоматериал об уникальных лазерах компании РосАтом, о том как они устроены и о лазерных технологиях которые российские атомщики запатентовали первыми в мире.
Троицкий институт инновационных и термоядерных исследований «ТРИНИТИ» в декабре 2020 года сдал в промышленную эксплуатацию Мобильный лазерный технологический комплекс (МЛТК). Иттербиевый волоконный лазер с легкость справляется с деревом, металлом, бетоном или камнем с дистанции в сотни метров. Концентрированный пучок энергии проникает в материал и при температуре около 1500 градус режет материал словно нож.
-
Специалисты компании «Квантовая оптика» создали дисковый лазер для подавления оптоэлектронных приборов противника, сверхдальней локации, зондирования околоземного космического пространства и других технологических процессов. Разработка велась в рамках совместной программы России и Белоруссии с шифром «Луч».
Программа «Разработка критических стандартных технологий проектирования и изготовления изделий наноструктурной микро и оптоэлектроники, приборов и систем на их основе и оборудования для их производства и испытаний» стартовала в 2016 году.
-
В 1965 году несколько научных, проектных и производственных организаций СССР начали работу в рамках программы «Терра». Целью последней являлось создание перспективной системы противоракетной обороны, поражающей цели при помощи лазерного луча. Активные работы и полигонные испытания продолжались до конца семидесятых годов. За полтора десятилетия специалисты успели создать и построить научно-экспериментальный комплекс «Терра-3» (полигон Сары-Шаган), а также провести несколько вспомогательных исследований и проектов.
Лазерный локатор
Идея создания лазерного локатора для точного определения координат воздушных или иных целей появилась еще до старта «Терры» — ОКБ «Вымпел» занялось этой тематикой в 1962 г. В сентябре 1963-го проект под обозначением ЛЭ-1 получил одобрение Военно-промышленной комиссии, которая постановила построить опытный образец такого локатора. Затем «Вымпел» и Государственный оптический институт выполнили проектирование, и во второй половине семидесятых на полигоне Сары-Шаган началось строительство объекта.
-
- Комплекс "Терра-3" в представлении американского художника. По-видимому, зарубежные аналитики приняли замеченный локатор ЛЭ-1 или телескоп ТГ-1 за боевой лазер
- © topwar.ru
-
-
Физики из МФТИ и Института Иоффе теоретически доказали, что так называемые полуметаллы Вейля, своеобразные трехмерные аналоги графена, будут идеально подходить для создания мощных лазеров. Их выводы были представлены в журнале Physical Review B.
-
Твёрдотелый лазер на 90% сильнее своих «собратьев», сообщает пресс-служба холдинга. Чтобы повысить мощность, нужно было применить нестандартные подходы. Это новшество, будет использоваться в системе навигации воздушных и морских судов, целеуказании и дальнометрии
-
Избранный директор Институт автоматики и электрометрии СО РАН в апреле выступил с двумя приглашёнными докладами на международных лазерных конференциях в Китае и США, в которых он рассказал о разработанных в рамках проекта РНФ новых схемах волоконных лазеров, работающих на эффекте вынужденного комбинационного рассеяния (ВКР).
-
В последние годы Россия планомерно увеличивает экспорт лазеров: согласно данным ФТС России, если в 2013 г. поставки равнялись 55 млн долл., то в 2016 г. достигли 129 млн долл., за 10 месяцев 2017 г. экспорт составил 105 млн долл. (исключая крупную поставку в Алжир, связанную с ВПК). Одновременно экспорт частей и комплектующих лазеров (включая небольшие объемы другой спецоптики) вырос с 26 млн долл. в 2013 г. до 105 млн долл. в 2016 г. и 123 млн долл. за 10 месяцев 2017 г.
-
Ученые Института геологии и минералогии им. В. С. Соболева СО РАН создали образцы кристаллов с улучшенными свойствами, которые могут применяться для изготовления твердотельных лазеров современных спектрометров и гамма-детекторов. Спектрометры различного вида используются для выяснения состава веществ — жидкостей, газов. Область применения зависит от длины волны используемого лазерного луча. В нашем случае речь идет об инфракрасных лазерах, которые используются, например, для анализа загрязненности воздуха, определения вредных примесей в нем.
-
Холдинг «Росэлектроника», входящий в состав Госкорпорации Ростех разработал систему освещения, которая основана на использовании лазерного излучения и удаленного люминофора.
Подобная система освещения теперь позволит исключить опасность возникновения пожара из-за возникновения искры, как это иногда случается. Мало того, система способна работать под водой и в очень жестких, агрессивных средах.
Конкретно разработка принадлежит АО «Оптрон», расположенному в Москве и входящему в состав холдинга «Росэлектроника». Инженеры построили эти системы на базе синих лазеров собственной разработки, диапазон длин волн излучения от 440 до 470 нм. Эти лазеры изготовили на основе алюминия, галлия и индия. Поэтому устройства очень яркие и способны отдавать до 100 лм/Вт.
-
Инженеры холдинга «Росэлектроника» Госкорпорации Ростех разработали системы освещения, основанные на использовании лазерного излучения и удаленного люминофора. Разработка исключает опасность возникновения пожара или взрыва из-за возникновения искры при включении электропитания и способна работать в агрессивных средах, а также под водой.
Системы, проектируемые входящим в холдинг АО «Оптрон» (Москва), построены на базе синих лазеров (диапазон длин волн излучения 440-470 нм) собственной разработки, изготовленных на основе III-N гетероструктур (нитриды металлов III группы, — алюминий, галлий, индий). Осветительные устройства обладают высокой световой отдачей — до 100 лм/Вт и световым потоком — до 2000 лм.
-
Наземная отработка оборудования российского самолета А-60, который предполагается оснащать лазерным оружием, уже завершена. Об этом сообщил представитель минобороны России.
«Здесь говорить пока многое нельзя. Но могу сказать, что развитие комплекса А-60 продвигается. Завершены работы по глубокой модернизации бортового комплекса, обеспечивающие значительное наращивание его тактико-технических характеристик. К настоящему времени проведена наземная отработка. Сейчас продолжаются летные эксперименты, результаты которых подтверждают правильность принятых решений», — рассказал представитель в интервью газете «МК»
Ранее о создании в России самолета с лазерным оружием сообщил ТАСС источник в оборонно-промышленном комплексе. Позднее первый заместитель гендиректора концерна «Радиоэлектронные технологии» (КРЭТ, входит в Ростех) Владимир Михеев заявил, что самолет получит высокоточный лазер и мощную систему защиты от радиоэлектронного воздействия.
-
Ученые из Института автоматики и электрометрии СО РАН (Новосибирск) совместно с коллегами из Научного центра волоконной оптики (Москва) впервые в мире синтезировали волоконный лазер на основе висмутового световода. Лазерный луч, имеющий уникальные физические характеристики, может в будущем найти применение в устройствах визуализации, например, в лазерных дисплеях. Результаты исследования опубликованы в журнале Scientific Reports, а их популярное изложение представляет портал Наука в Сибири.
Еще в 2010 году новосибирские физики установили возможность случайной генерации, обусловленной явлением рэлеевского рассеяния в волоконных светодидах. Сейчас активно разрабатываются возможности расширения этой технологии для передачи сигналов связи на дальние расстояния. В частности, перед исследователями стоит задача сделать лазер миниатюрнее.
-
Холдинг «Швабе» ввел в эксплуатацию контрольно-измерительную лабораторию для изготовления высокоточных оптических деталей для лазерной техники. Комплекс новейшего оборудования создал условия для метрологического обеспечения изготовления прецизионных оптических деталей для лазерной техники с повышенными требованиями.
Установленная на предприятии Холдинга «Швабе» — НПО «Оптика», контрольно-измерительная лаборатория начала осуществление контроля формы и шероховатости прецизионных оптических деталей для лазерной техники. Специалисты отмечают повышение точности процесса измерений и производительности контроля на 20% с момента запуска системы.
-
Предприятие Холдинга «Швабе» разработало технологию склейки твердотельных активных элементов для лазерных систем с применением температурного воздействия. Она позволяет в 2,5 раза сократить время данной технологической операции.
Новая технология была создана специалистами предприятия Холдинга «Швабе» — АО «Лыткаринский завод оптического стекла (АО ЛЗОС). Она предназначена для соединения крупногабаритных дисковых активных элементов лазерных систем, применяемых в ходе исследований по лазерному термоядерному синтезу.
-
Ученые из города Мичуринска Тамбовской области разработали собственную методику лазерной обработки растений, которая приводит к более интенсивному росту сельхозкультур. Как сообщил ТАСС заведующий научно-исследовательской лабораторией «Биофотоника» Мичуринского аграрного университета Андрей Будаговский, о подобных свойствах лазерного излучения было известно еще в 1970-е годы, но понять природу феномена удалось только сейчас.
«Мы не создали какой-то особенный лазер, не стали первыми заметившими эффект лазерной стимуляции, но нам удалось существенно расширить представления о механизме данного явления, а также разработать собственную методику облучения растений лазером для ускорения их роста и повышения функциональной активности», — рассказал Будаговский. Он подчеркнул, что лазер не открывает никаких новых свойств в растениях, просто заставляет активизироваться те процессы, которые им присущи генетически.
-
Первую очередь самой мощной в мире лазерной установки УФЛ-2 М запустят в Сарове Нижегородской области в конце 2017 года, сообщил журналистам директор Российского федерального ядерного центра — Всероссийского научно-исследовательского института экспериментальной физики (Саров) Валентин Костюков на форуме «Атомэкспо-2016».
Строительство идет по графику, одновременно создается технологическое оборудование, заявил он. По словам Костюкова, на 95% в лазерной установке будут использованы российские технологии.
Установка УФЛ-2м займет площадь примерно двух футбольных полей и будет иметь 192 лазерных канала. В самой высокой точке она достигнет размеров десятиэтажного дома.
Лазерная установка нового поколения предназначена для фундаментальных исследований в области физики высоких плотностей энергии, в том числе — применения лазерного термоядерного синтеза в энергетике. УФЛ-2 М будет иметь двойное назначение, одно из которых — военное. Эксперименты в области физики плотной горячей плазмы и высоких плотностей энергии, которые проводятся на подобного рода установках, могут быть направлены на создание термоядерного оружия. Второе направление — энергетическое. Лазерный термоядерный синтез может использоваться для разработки энергии будущего.
-
Холдинг «Швабе» получил патент на лазер с оптико-механическим затвором. Новый прибор обладает низким энергопотреблением, минимальным уровнем паразитных электрических воздействий, а также колоссальным быстродействием: он в 300 раз превосходит ближайшие российские и зарубежные аналоги по данному показателю.
Изделие, созданное специалистами предприятия Холдинга «Швабе» — АО «НИИ «Полюс», относится к лазерам, работающим в импульсном режиме. Новинка включает активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно относительно корпуса, а второе снабжено электрическим приводом и имеет возможность вращения.
-
Сотрудники Института автоматики и электрометрии СО РАН впервые продемонстрировали эффективную каскадную генерацию высоких порядков волоконного лазера со случайной распределённой обратной связью (СРОС-лазера). Результаты работы опубликованы в журнале Scientific Reports группы Nature.
«Любой лазер — это среда, усиливающая свет. По краям её стоят зеркала. Они и создают обратную связь, которая возвращает луч, пытающийся выйти из этой среды, обратно. Он начинает бегать по замкнутому пространству, усиливаться, и в результате его интенсивность достигает очень больших величин, и получается очень мощное лазерное излучение», — рассказывает научный сотрудник ИАиЭ СО РАН кандидат физико-математических наук Илья Дмитриевич Ватник.
-